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Summary 
In this paper, we report the electrochemical polymerization of 1-ethynylpyrene (EP), 
1-(but-1-yn-3-enyl)pyrene (BP) and 1-(4-trimethylsilanylbuta-1,3-diynyl)pyrene 
(TMSBDP). The obtained oligomers were characterized by FTIR and NMR 
spectroscopies. Thermal properties of these compounds were determined by 
thermogravimetric analysis and differential scanning calorimetry, and their optical 
properties by absorption and fluorescence spectroscopies. Electrical conductivity of 
the oligomers was measured in the doped state. 

Introduction 
Over the last 30 years, π-conjugated polymers have been considered as promising 
materials for the development of electronic devices such as light emitting diodes, 
photovoltaic cells and non-linear optical systems. Opto-electronic properties vary 
significantly depending on the conjugation length between the consecutive repeat 
units [1-9]. In previous works, we carried out the chemical polymerization of  
1-ethynylpyrene (EP) and other related monomers under different reaction conditions 
[10-11]. Catalytic polymerization of EP with WCl6 resulted in the formation of trans-
poly(1-ethynylpyrene) (trans-PEP) with molecular weights ranging from 24,000 to 
470,000 g/mol and polydispersities between 2.9 to 11 [10]. Polymerization of EP was 
also carried out using the catalytic system (1-methyl-indenyl)(PPh3)Ni-C≡C-Ph and 
methylaluminoxane (MAO) [11]. This method provided the formation of soluble cis-
transoidal poly(1-ethynylpyrene) (cis-PEP) with molecular weights from Mw = 2,200 
to 24,000 g/mol and polydispersities about 2. In both cases, the polymerization takes 
place exclusively through the triple bond present in the monomer. Furthermore, we 
carried out a comparative investigation between the thermal, optical, electrochemical 
properties and conductivity of poly(1-ethynylpyrene) in function of the configuration 
of the polyacetylene backbone and the internal stacking of pendant aromatic groups 
[12-13]. We also performed an in-depth study of the electrochemical behavior of 
pyrene, 1-ethynylpyrene, 1-(but-1-yn-3-enyl)pyrene and 1-(4-trimethylsilanylbuta-
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1,3-diynyl)pyrene by cyclic voltammetry in acetonitrile. It was found that these 
monomers disclose an irreversible anodic peak around 1260 - 1670 mV vs AgCl/ Ag, 
which is significantly influenced by the electronic and steric effects of the sustituents 
[14]. 
In the present work, we report the electrochemical polymerization of three pyrene 
derivatives: 1-ethynylpyrene (EP), 1-(but-1-yn-3-enyl)pyrene (BP) and 1-(4-
trimethylsilanylbuta-1,3-diynyl)pyrene (TMSBDP). Unlike the chemical method, 
electrochemistry led to the formation of linear oligomers, where the polymerization 
takes place mainly through the aromatic rings, so that the triple bonds present in the 
monomers remain intact. We selected pyrene containing monomers in this work, 
because pyrene is an efficient fluorescent probe, which has been successfully used as  
a molecular label in the study of a huge variety of polymers [15-25]. 
The molecular structures of the obtained substituted poly(pyrenylene)s: poly(1-
ethynylpyrene) (E-PEP), poly(1-but-1-yn-3-enyl)pyrene (E-PBP) and poly(1-(4-
trimethylsilanylbuta-1,3-diynyl)pyrene) (E-PTMSBDP), where E indicates that the 
oligomer was obtained electrochemically, are shown in Scheme 1. 

 
Scheme 1.  Electro-synthesis of the oligomers: E-PEP, E-PBP and E-PTMSBDP. 

Experimental 

Chemicals and Monomers 
Acetonitrile (Aldrich, HPLC Grade) was distilled over phosphorous pentoxide (P2O5) 
in order to remove traces of water. Tetraethylammonium tetrafluoroborate (Aldrich) 
was recrystallized from an acetone-hexane solution, and dried overnight under 
vacuum at 60ºC. Synthesis of EP, BP and TMSBDP was achieved according to the 
procedures previously reported by us [10]. 

Cells, Electrodes, and Apparatus 

All experiments were carried out in a three-electrode undivided cell, using acetonitrile 
(ACN) as solvent, tetraethylammonium tetrafluoroborate (Et4NBF4) as supporting 
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electrolyte and an Ag-AgCl as reference electrode. Platinum was used as the working 
and auxiliary electrode in disc, wire and foil shape. In cyclic voltammetry 
experiments, the working electrode was a platinum disc with a surface area of  
0.0314 cm2 and the auxiliary electrode was a platinum wire. For the synthesis of the 
oligomers in an amount enough to enable characterization, a Pt foil with a 2 cm2 
surface area was used as working electrode, as well as a 4 cm2 foil as an auxiliary 
electrode. An Autolab PGSTAT100 potentiostat was employed for cyclic voltammetry 
and a PAR 173 potentiostat/galvanostat for exhaustive electrolysis. 
FTIR spectra of the oligomers were recorded on a Nicolet FTIR 5 DXB spectrometer 
using KBr pellets of the samples. 1H-NMR spectra of the oligomers in d8-THF 
solution were recorded at room temperature on a Bruker Avance 400 MHz 
spectrometer.  
Thermal properties of the oligomers, E-PEP, E-PBP, and E-PTMSBDP were studied 
by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). 
TGA was conducted on a Hi-Res TGA 2950 Instrument (from 0 to 1000oC) and DSC 
was carried out on a DSC 2910 instrument (from 25 to 200oC), in both cases with  
a heating rate of 10oC/min. T5 (5% weight loss temperature), T10 (10% weight loss 
temperature), and Tm (melting point) were determined for all compounds. 
For UV-vis and fluorescence spectroscopies, tetrahydrofuran (THF) was purchased 
from Aldrich (spectrophotometric grade). Prior to use, the solvent was checked for 
spurious emission in the region of interest and found to be satisfactory. The absorption 
spectra in solution were recorded on a Varian Cary 1 Bio UV/vis spectrophotometer 
(model 8452A) using 1 cm quartz cells and solute concentrations of 1-3 × 10-5 M for 
the oligomers. It has been verified that the Beer-Lambert law applies for the 
concentrations used.  Fluorescence spectra corrected for the emission detection were 
recorded on a Spex Fluorolog-2 spectrophotometer with an F2T11 special 
configuration. Each solution was excited near the absorption wavelength maximum 
using a 1 cm quartz cell. For the oligomers, a concentration of about 1-3 × 10-6 M was 
used, giving absorbances of less than 0.1 in order to avoid any inner filter effect. 
Molecular modeling was performed in model oligomers with the program Hyperchem 
6.0 for Windows. Geometry optimization was estimated by semi-empirical 
calculations using the PM3 method. 

Procedure 

Electrolytic solutions were prepared with 0.1 M Et4NBF4 in ACN. Prior to each 
experiment, the electrochemical cell was placed inside a Faraday cage and the 
electrolyte was purged with nitrogen for 40 min, and the reference electrode was 
immersed in dry acetonitrile for 20 min. Potential sweeps were performed from low 
(OCP) to high potentials, up to a potential (Eλ) in which the direction of the scan was 
reversed. Before each measurement, the working electrode was cleaned and polished 
with 0.05μm alumina (Buehler), wiped with a tissue and washed with distilled water. 
In all the experiments reported here, potentials are referred to the 
ferrocinium/ferrocene (Fc+/Fc) redox system. In order to investigate the 
electrochemical behavior of the monomers, a concentration of 1 mM was used. For 
electropolymerization experiments higher concentrations were utilized. To prepare 
samples to be used for whole characterization, a concentration of 7.5 mM was 
employed. Once the oligomer samples were obtained, they were washed with pure 
ACN in order to remove the unreacted monomer and then dried at room temperature. 
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Results and Discussion 

Electropolymerization of EP, BP and TMSBDP 

The voltammetric behavior of substituted pyrenes depends in a big measure on the 
nature of the substituents [26, 27]. Figure 1A shows the cyclic voltammogram at  
100 mVs-1 corresponding to 1 mM pyrene. In the forward scan two anodic signals are 
observed: one shoulder located at about 0.949 V (Ia), followed by a broad peak 
centered at 1.270 V (IIa). At the reverse scan it appears a cathodic peak at 0.526 V 
(Ic). When the potential scan is switched at the beginning of the broad oxidation peak 
(peak IIa), the polymerization is inhibited. On the other hand, when it is switched at 
the oxidation shoulder (Ia), a dark oligomer film is deposited on the electrode surface. 
Figure 1B shows the voltammograms corresponding to the electro-oxidation of 5mM 
pyrene in the presence of 0.1 M Et4NBF4, employing a scan rate of 20 mVs-1. When 
the potential scan is switched at Eλ=0.938 V, current increases with each cycle, which 
indicates a successful electroactive film growth. During this process two peaks appear, 
Ic’ and Ia’, which correspond to the reduction and oxidation of the formed polypyrene 
film (E-PPy) respectively. As the film grows during the polymerization, the 
voltammetric wave associated with the oxidation of the oligomer becomes slightly 
more positive and the reduction wave becomes more negative with successive scans. 
This is due to the presence of a spherical diffusion regime towards the holes that the 
film could present or to the resistivity of the film itself, which causes the electron 
transfer rate to become slower with respect to that of the platinum non modified 
surface. The resulting polypyrene (E-PPy) was doped by the incorporation of the 
supporting electrolyte anions into its framework. After cycle 20, the anode began to be 
passivated by the electrodeposited product; this means that it is not possible to obtain 
a higher molecular weight polymers. The resulting film can be peeled off from the 
electrode surface when at least 7.5 mM monomer is used and after a minimum of  
12 cycles. Figure 2A shows the cyclic voltammograms at 100 mV/s, which correspond 
to monomers BP, EP, and TMSBDP. By contrast, unlike the voltammogram obtained 
for pyrene (Figure 1A), these monomers do not show any cathodic signal in the 
reverse scan. However, in the forward scan, two anodic signals can be seen for pyrene 
derivatives: a shoulder (Ia) located at about 0.892 V (BP), 0.941 V (EP), and 1.030 V 
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Figure 1. Cyclic voltammograms obtained from A) 1mM Py in 0.1M Et4NBF4/ACN, at  
100 mVs-1, and B) 5mM Py in 0.1M Et4NBF4/ACN, at 20 mVs-1, Eλ = 0.938 V. 
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(TMSBDP) followed by a broad peak (IIa) centered at 1.252 V (BP), 1.330 V (EP) 
and 1.358 V (TMSBDP). As in the electrochemical polymerization of pyrene, when 
the potential scan is switched at the oxidation shoulder (Ia), a dark oligomer film is 
obtained. Figure 2B shows the voltammograms corresponding to the electrochemical 
polymerization of 5mM EP in the presence of 0.1 M Et4NBF4 at 20 mVs-1 by the 
application of successive potential scans. When the potential scan is switched at 
Eλ=0.900 V current increases with each cycle due to the growth of the E-PEP chain. 
Molecular weights (Mw) of E-PEP, E-PBP, and E-PTMSBDP were estimated by GPC in 
THF using polystyrene as standard and were found to be 2,300, 2,500, and 2,250 g/mol, 
respectively. Cyclic voltammetry characterization of the obtained oligomers was 
performed in acetonitrile solutions containing only supporting electrolyte. All the 
films present a current decrease with successive scans (not shown) until a typical 
reproducible voltammetric behavior, after seven scans, is established. 
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Figure 2. Cyclic voltammograms obtained from A) 1mM BP, EP, and TMSBDP in 0.1M 
Et4NBF4/ACN, at 100 mVs-1, and B) 5mM EP in 0.1M Et4NBF4/ACN, at 20 mVs-1, Eλ = 0.90 V. 

FTIR Spectra of the oligomers 

Since the 1H-NMR spectra of the oligomers (not shown) exhibited very broad bands in 
the aromatic region between 6-8.5 ppm, which did not provide very much information 
about the structure of these materials, the structure of the oligomers was supported by 
FTIR spectroscopy. Figure 3A shows the spectrum of 1-ethynylpyrene (EP). The 
bands located at 3432 and 3290  cm-1 are characteristic vibration bands of the terminal 
alkyne bond (≡C-H), whereas the bands at 2370 and 2090 cm-1, are related to the 
vibration bands of the alkyne triple bond (C≡C) [11, 28]. The bands at 1640-1620 cm-1 
are due to the C=C stretching vibrations, while the band at 1600 is related to the C–H 
bending vibration of the pyrene rings. On the other hand, the stretching band at  
3040 cm-1 is associated with the C–H of the pyrene rings, whereas the bands at 1180, 
841, 750 and 642 cm-1 are attributed to the out-of-plane bending vibration of the three 
adjacent =C–H bonds of pyrene rings [11, 25, 28-31]. 
It is very well known that positions 1,3,6,8 are the more reactive sites in pyrene [14, 32]. 
In our monomers, position 1 is occupied so that 3,8 and 3,6-couplings take place 
(sterically favored), but also traces of 3,3 (sterically unfavored), 6,6 and 6,8-couplings 
could be present in the oligomers. When comparing of the FTIR spectrum of E-PEP 
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(Figure 3B) with the corresponding monomer EP (Figure 3A), the oligomers exhibit  
a much weaker intensity band at 750 cm-1, which can be attributed to the out-of-plane 
vibrations of the three C-H bonds of the pyrene unit. However, the band at 841 cm-1, 
due to the two adjacent bonds of pyrene rings did not decreased in intensity. Such 
spectral results indicate that the polymerization of pyrene occurred through an α-α 
coupling of the pyrene rings. These data match well with those previously reported by 
Shi et al for the electrochemically synthesized polypyrene [30, 31]. Taking into 
account the steric effect of the substituents, we believe that 3,6 coupling and 3,8-
coupling (depicted in Scheme 1 and Figure 7) predominate in the polymer backbone. 
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Figure 3. FTIR spectra (KBr, pressed pellet) of A) EP and B) E-PEP previously obtained from 
20 mM EP in 0.1 M Et4NBF4/ACN. 

The band at 1634 cm-1 (Figure 3B) is due to the C=C stretching vibration of pyrene 
rings and that at 1600 cm-1 is related to the C-H bending vibration of these groups; the 
band at 3040 cm-1 is associated with the C-H stretching of the pyrene rings. We 
observed also a decrease in intensity of the bands at 1180, 750 and 618 cm-1, which 
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are associated to the out-of-plane vibration =C–H bonds of pyrene ring, as well as the 
presence of a band at 1050 cm-1 related to the incorporation of BF4

- counterions [29]. 
The presence of the bands at 3430 and 2370 cm-1, which are characteristic vibration 
bands of the alkyne group, confirm that the triple bonds present in the monomer 
remained intact after the reaction, so that the polymerization takes place exclusively 
through the pyrene units. These bands were not observed in the FTIR spectrum of 
chemically obtained trans-PEP [10].  E-PBP and E-PTMSBDP exhibited very similar 
FTIR spectra to that obtained for E-PEP.  

Thermal Properties of the obtained oligomers 

Thermal properties of the oligomers were evaluated by thermogravimetric analysis 
(TGA), from 0 to 900ºC (Figure 4) and differential scanning calorimetry (DSC) from 
20 to 200ºC; the results are summarized in Table 1. According to TGA measurements 
E-PEP showed a moderate thermal stability with a T5 = 138ºC. This oligomer 
exhibited degradation in two steps between 250-600ºC and beyond 800ºC. DSC 
measurements (not shown) revealed that this oligomer displays a softening point at  
Ts = 117ºC. By contrast, E-PTMSBDP possesses a good thermal stability with a T5 value 
of 240ºC. This oligomer exhibited gradual degradation leaving 82.5% of remains at 
900ºC. Finally, E-PBP showed a very high thermal stability so that its T5 value could 
not be determined. In particular, this oligomer showed very slight degradation, losing 
3.5% weight at 900ºC. According to DSC measurements, E-PBP and E-PTMSBDP 
exhibited no softening point in the studied range of temperatures. As we can see, the 
presence of additional triple bonds or double bonds in the monomer increases the 
thermal stability of the oligomers. The same effect was previuosly reported by us 
when we compared the thermal properties of poly(1-ethynylpyrene) and poly(1-buta-
1,3-diynylpyrene) chemically obtained, using WCl6 as catalyst [10]. 
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Figure 4. TGA of the obtained oligomers:  E-PEP, E-PBP and E-PTMSBDP. Scan rate 
10ºC/min. 



468 

 

Table 1. Thermal, optical properties and conductivity of the obtained oligomers 

Oligomer T5 (ºC)a Ts (ºC)a λmax (nm) λem (nm) σ (S/cm) 

E-PEP 138 117 358 387-407 8.4 x10-2 

E-PBP NDb - 364 387-407 2.1 x 10-2 

E-PTMSBDP 240 - 358 387-407 4.6 x 10-2 

a Heating rate 10ºC/min; b 3.5% weight lost at 900ºC 

Optical Properties of the Oligomers 

Optical properties of the oligomers were studied by absorption and fluorescence 
spectroscopies and the results are summarized in Table 1.  Absorption spectra of the 
obtained oligomers in THF solution are shown in Figure 5. The absorption spectra of 
E-PEP exhibited a well defined S2 ← S0 band at λmax = 358 nm [33] with cut off at  
λ = 550 nm due to pyrene units present in the oligomer. On the other hand, E-PBP 
exhibited the same band at λmax = 364 nm, slightly red shifted compared to that of E-
PEP. Plus, we can observe a shoulder at λ = 377 nm, which could be due to the 
presence of slight pyrene-pyrene intramolecular interactions in this oligomer. By 
contrast, E-PTMSBDP showed a broader absorption band centered at λmax = 358 nm 
followed by a shoulder at λ = 389 nm and a tail at λ = 430 nm, which reveal the 
presence of stronger intramolecular interactions between the aromatic units present in 
the oligomer. It is very well known that non substituted oligopyrene exhibits a twisted 
conformation of the polymer backbone, because of steric effects between hydrogens 
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Figure 5. Absorption spectra of the obtained oligomers: E-PEP, E-PBP and E-PTMSBDP in 
THF solution. 
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belonging to neighbor pyrene units [31]. Although the presence of bulky substituents, 
in our obtained oligomers, the oligopyrene backbone skews from planarity as 
oligopyrene itself do, giving rise to intramolecular pyrene-pyrene interactions. The 
presence of additional triple or double bonds as substituents modify the absorption 
spectra of the oligomers because of donor electronic effects. 
Fluorescence spectra of the obtained oligomers were very similar and exhibited an 
emission band at λF = 387-407 nm due to pyrene units in the non-associated state 
“monomer emission” [33]; the emission spectra of E-PEP is shown in Figure 6. 
Apparently, there is no excimer emission bands in the fluorescence spectra of these 
oligomers. Since the fluorescence spectra did not exhibit any broadening of the 
emission band, as in the case of other chemically obtained polypyrenylacetylenes [10], 
where the polymerization takes place exclusively through the triple bonds, we can 
affirm that the oligomers backbone is so twisted that the aromatic rings tend to behave 
as isolated pyrene units, giving rise mainly to “monomer emission”. However, a weak 
emission beyond 450 nm, a wavelength where pyrene does not emit, reveals the 
presence of slight pyrene-pyrene interactions. Since the fluorescence spectra were 
recorded in very diluted solutions such interactions are undoubtedly intramolecular. 
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Figure 6. Fluorescence Spectra of E-PEP in THF solution (λexc = 350 nm). 

Molecular Modeling and Conductivity 

In order to support the results obtained by absorption and fluorescence spectroscopies, 
molecular modeling was performed in model pentamers of E-PPy, E-PEP, E-PBP and 
E-PTMSBD, by semi-empirical calculations using the PM3 method, and the obtained 
optimized geometries are shown in Figure 7. As we can see, all oligomers showed  
a twisted conformation with dihedral angles varying from 55-79º. Therefore, we can 
conclude that in these substituted oligopyrenes, the oligomer backbone torsions are 
not increased significantly by the steric effects of the lateral side groups compared to 
non substituted oligopyrene. However, such torsions prevent the conjugation effect 
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along the polymer backbone so that the emission spectra of oligomers show 
predominantly “monomer emission” [33]. 

 
Figure 7. Optimized geometry for E-PPy, E-PEP, E-PBP and E-PTMSBDP calculated by the 
PM3 method. 

Finally, the conductivity of the oligomers was measured in pressed pellet in the doped 
state giving values of σ = 8.4 x10-2, 2.1 x 10-2 and 4.6 x 10-2 S/cm for E-PEP, E-PBP 
and E-PTMSBDP respectively. According to these results, E-PEP seems to be more 
conducting than E-PBP and E-PTMSBDP. Apparently, oligomers bearing the less 
bulky substituents reach a better packing in pressed pellet, thereby showing higher 
conductivity values in the solid state. 
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Conclusion 
FTIR spectroscopy confirmed that the electrochemical polymerization of EP, BP and 
TMSBDP takes place predominantly through the aromatic rings, and the triple bonds 
remain intact. Typically, in the chemical process the polymerization takes place through 
the triple bonds. All obtained oligomers showed absorption at λmax = 358-364 nm and 
fluorescence at λF =387-407 nm.  Despite the relative absence of excimer bands, slight 
emission beyond 450 nm, revealed the presence of intramolecular interactions 
between pyrene units. Such torsions are responsible of the predominance of monomer 
emission in the fluorescence spectra. Molecular modeling showed that the substituents 
do not modify significantly the dihedral angles between pyrene units in the oligomers. 
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